
REVIEWS

Phytochemicals for Health, the Role of Pulses

SIMONE ROCHFORT*,†
AND JOE PANOZZO

‡

Department of Primary Industries, Werribee Centre, 621 Sneydes Rd, Werribee 3030, Victoria,
Australia, and Department of Primary Industries, Horsham Centre, 110 Natimuk Road, Horsham 3400,

Victoria, Australia

Pulses are the seeds of legumes that are used for human consumption and include peas, beans,
lentils, chickpeas, and fava beans. Pulses are an important source of macronutrients, containing
almost twice the amount of protein compared to cereal grains. In addition to being a source of
macronutrients and minerals, pulses also contain plant secondary metabolites that are increasingly
being recognised for their potential benefits for human health. The best-studied legume is the soybean,
traditionally regarded as an oilseed crop rather than a pulse. The potential health benefits of soy,
particularly with respect to isoflavone content, have been the subject of much research and the focus
of several reviews. By comparison, less is known about pulses. This review investigates the health
potential of pulses, examining the bioactivity of pulse isoflavones, phytosterols, resistant starch,
bioactive carbohydrates, alkaloids and saponins. The evidence for health properties is considered,
as is the effect of processing and cooking on these potentially beneficial phytochemicals.
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INTRODUCTION

Pulses have traditionally played a major role in providing
food nutrition particularly in the Indian subcontinent and other
developing countries, while in western countries, the staple diet
has been based on animal-derived protein.

Traditionally, pulses were consumed with minimal processing,
and consumers were interested primarily with size, shape, and
color characteristics. The markets were driven by price and
availability. As the countries of the Indian subcontinent
developed, a greater emphasis was placed on processing
characteristics, which included hydration and cooking times as
well as dehulling and splitting efficiency. This represents the
current status for the majority of markets that consume pulse
grains as a staple diet. While these market traits represent basic
quality characteristics, the underlying chemical characteristics
are based on protein and starch composition and phenolic
compounds that affect the taste and color of the seed coat and
cotyledon.

The nutritional properties of pulses have been investigated
extensively and have been reported to impart physiologically
beneficial effects in humans. Pulse grains are high in protein,
carbohydrates, and dietary fiber and are a rich source of other

nutritional components (1). The chemical composition and
nutritive value of Australian pulses has been collated by Peterson
et al. (2).

The value of pulses can be enhanced by physically fractionat-
ing the grain into basic constituents such as protein, starch, and
fiber and using these products to supplement other food
ingredients to enhance the nutritive value of food. There is now
an increased awareness of the health-associated value of pulses
in western countries. Pulse grains contain a large number of
bioactive compounds which have a metabolic benefit when
consumed on a regular basis (3).

Demand has increased regarding the use of pulses for human
consumption either to extract a functional compound (e.g., starch
protein or fiber) to incorporate this into cereal-based products
or to extract phytocompounds which are bioactive and can be
used as nutraceutical products.

Figure 1 represents the changing emphasis for plant breeding
and consumer demand. There is a need to increase the
knowledge base for pulses by understanding more of the
functional and bioactive properties of pulse grains (4).

Considerable genetic variation has been reported in the
chemical composition of pulses both between and within species.
In addition, chemical composition is modified by environmental
factors during plant development, and many of the phytocom-
pounds are secondary metabolites produced during seed devel-
opment and seed maturation.

This paper reviews the current knowledge around certain
classes of pulse phytochemicals, including starch, phytosterols,
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isoflavones, saponins, alkaloids, and bioactive carbohydrates.
The potential for these metabolites to influence human health
is discussed as are processing methods and agricultural practices
that influence the levels of these compounds in food.

RESISTANT STARCH

Starch is a major carbohydrate in pulse grains, and due to its
high concentration of amylose, the process of digestion and
metabolism is therefore of interest, particularly as there is a
strong negative correlation between the intake of starch and the
risk of colorectal cancer (5).

Starch can be classified according to digestibility as soluble,
insoluble, or resistant starch (RS). Until recently, starch was
thought to undergo complete breakdown and absorption upon
digestion. In 1992, Englyst et al. referred to RS as the proportion
of starch that is not hydrolyzed or digested as it passes through
the gastrointestinal tract (6). Resistant starch that reaches the
large intestine has a physiological function similar to that of
dietary fiber. Resistant starch can be considered a probiotic and
acts as a substrate for microbiological fermentation, producing
short-chain fatty acids (SCFAs), methane, and carbon dioxide,
conferring benefits to human colonic health, and to a lesser
extent can impact lipid and glucose metabolism. The production
of these fermentation products from the consumption of RS is
less than that from the consumption of nondigestible oligosac-
charides (7). It is believed that the SCFAs produced mediate
the benefits of RS rather than RS exerting a physical bulking
effect (8).

Short-chain fatty acids consist principally of butyrate, pro-
pionate, and acetate and are metabolic products of anaerobic
bacterial fermentation (9) and are the preferred respiratory fuel
of the colonocytes lining the colon. These cells serve to increase
blood flow, lower luminal pH, and help prevent abnormal
colonic cell populations (10). Human feeding studies have
shown that RS consumption in a diet results in an increase of
SCFA in the colon (11).

Pulse grains are high in RS (Table 1) and retain their
functionality even after cooking (12).

Worldwide, the dietary intake of RS varies considerably. In
developing countries, the intake is between 30 and 40 g/day
(13). In the EU, the intake of RS is between 3 and 6 g/day

(14), and in Australia, a similar intake has been reported by
Baghurst et al. (13) These figures represent the total amount
from all sources including fruit and vegetables.

Heat treatment or cooking of pulses increases hydrolysis;
however, incomplete starch gelatinization and the formation of
RS induced by high amylose starch results in lower digestibility
(15) and may contribute to low glycemic responses in humans
(6). As a food ingredient, RS has a lower calorific (8 kJ/g) value
compared with fully digestible starch (15 kJ/g); however, it can
be incorporated into a wide range of mainstream food products
such as baked products without affecting the processing
properties or the overall appearance and taste of the product
(16). This may represent an opportunity to increase the
consumption of pulse grains by fractionating pulses and
incorporating these products into cereal-based products.

PHYTOSTEROLS

Epidemiological data indicates that the consumption of grains,
including pulses, lowers the mortality rates from cardiovascular
disease (17). Elevated levels of serum low-density lipoprotein
(LDL) cholesterol is a major cause of cardiovascular disease,
and studies have shown that every reduction of 1% in LDL
cholesterol results in a 1% reduction in cardiovascular mortality
(18). These and other studies have led to the promotion of life-
style changes, which have resulted in a reduction in LDL
cholesterol.

The consumption of pulse grains has been reported to lower
serum cholesterol and increase the saturation levels of choles-
terol in the bile. A dietary study conducted by Duane on humans
over a seven week period showed that serum LDL cholesterol
was significantly lower during the consumption of a diet
consisting of beans, lentils, and field peas (19). The study
showed that consumption of pulses lowers LDL cholesterol by

Figure 1. Developing quality pulses for a sustainable environment, population, and community. (4)

Table 1. RS Composition in Pulse Grains and Wheat Bran (12)

grain product raw (% RS) cooked (% RS)

field pea (229) 2.4 1.9
lentil (229) 3.3 2.5
chickpea (229) 3.4 2.3
wheat (bran) 0.4 not reported
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partially interrupting the entrohepatic circulation of the bile acids
and increasing the cholesterol saturation by increasing the
hepatic secretion of cholesterol. The study also concluded that
other pulse components in the diet may also have contributed
to the observed effect; in particular, saponins, which are
hydrolyzed by intestinal bacteria to diosgenin, may have exerted
a positive effect (20, 21). Several studies have demonstrated
the efficacy of plant sterols and stanols in the reduction of blood
cholesterol levels, and plant sterols are increasingly incorporated
into foods for this purpose (22, 23).

Phytosterols are structural components of the plant-cell
membranes. In pulses, they are present in small quantities, and
the most common phytosterols are �-sitosterol (1), campersterol
(2), and stigmasterol (3), Figure 2 (24). These compounds are
also abundant as sterol glucosides and esterified sterol gluco-
sides, with �-sitosterol representing 83% of the glycolipids in
defatted chickpea flour (25).

ISOFLAVONES

Flavones and isoflavones have been isolated from a wide
variety of plants, though the isoflavones are largely reported
from the Fabaceae/Leguminosae family. There has been enor-
mous interest in their biological activity. Chemically, they are
based on phenylchromen-4-one and have the general structures
shown in Figure 3. The increased interest in the biological
effects of these molecules can be demonstrated by the increase
in published literature in this area. Figure 4 graphs the number
of references citing biological activity of flavones or isoflavones
since 1940. The number of publications in the past few years
(2000 on) is more than double that published in the entire
preceding 60 years (1263 vs 619). Of these, 570 papers deal
specifically with compounds from legumes.

In terms of specific compounds studied, genistein and daidzein
are the most cited (275 and 189 references, respectively) with
the related glycosides, genistin and daidzin (54 and 46 refer-
ences, respectively) also the subject of considerable interest.
Five of the most reported isoflavones are genistein (4), daidzein
(5), coumestrol (6), formononetin (7), and biochanin A (8)
(Figure 5). Genistin and daidzin are the seven-glucose deriva-
tives of 4 and 5, respectively.

According to the USDA survey on isoflavone content, lentils
do not contain significant amounts of these isoflavones (26).

Chickpeas contain 0.04 mg/100 g daidzein, 0.06 mg/100 g
genistein, 0.14 mg/100 g formononetin, and approximately 1.7
mg/100 g biochanin A. Soybeans have significantly higher levels
of daidzein (47 mg/100 g) and genistein (74 mg/100 g) but
contain less formononetin and biochanin A compared to
chickpeas, 0.03 mg/100 g and 0.07 mg/100 g, respectively. No
figures are given for lupins.

Recently, there has been attention focused on a different class
of isoflavones, the glyceollins, which have been reported from
soy. These are biosynthetically related to pterocarpan and
probably derive from the condensation of pterocarpan and a
C5-terpene, Figure 6 (27). The glyceollin types of isoflavone
have not been reported from chickpeas, lupins, or lentils, despite
the fact that chickpeas are capable of synthesizing the related,
upstream metabolite daidzein.

Activities and Bioavailability. There are many biological
activities associated with the isoflavones, including a reduction
in osteoporosis and the prevention of cancer and cardiovascular
disease, and they can be used for the treatment of symptoms of
menopause. The potential health benefits of isoflavones for
humans have been the subject of several reviews that have
analyzed clinical, animal, and in vitro evidence for biological
activity (28–41).

Since the early 1990s, a significant research effort has focused
on the putative anticancer effects of isoflavones, in particular,
the effect on breast cancer. Initial interest in this area was due
to epidemiological observations of low breast cancer occurrence
in Asian populations where the intake of soy and associated
isoflavones is high. There has been sufficient research in this
area that, in November 2005, a workshop was held to review

Figure 2. Common phytosterols.

Figure 3. Generic structure of flavone and isoflavone classes.

Figure 4. References reporting biological activity for flavones or isoflavones
(search terms: Scifinder (all databases selected) using the phrase “activity
of isoflavone or isoflavonol or isoflavanol” on April 23, 2007).

Figure 5. Important isoflavones.
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the literature and make research recommendations (32). The
recent meta-analysis by Trock et al. (28) highlights the dif-
ficulties of comparing literature clinical studies. The authors
studied 12 case-control and six cohort studies (with the number
of subjects varying from 88 to 1459) but were forced to make
several assumptions regarding the quantities of isoflavones
ingested. Trock et al. conclude there is a small inverse
correlation between soy intake and breast cancer but note that
data limitations cannot rule out the possibility that this result is
an artifact of the analysis. One of the recommendations of the
conference was to encourage future studies to reduce the
heterogeneity of soy exposure data in the literature and provide
more detail regarding not only total soy food but also nutrient
content, such as the levels of isoflavones (29).

The intake of isoflavones has been recommended for menopausal
women to relieve symptoms of menopause (instead of hormonal
replacement therapy, HRT) (42). A recent review by Cassidy et
al. (34) concluded that, although additional studies are required,
there was limited evidence for the ability of isoflavones to relieve
the symptoms of menopause such as hot flashes. The HRT-like
actions of the isoflavones are thought to be due to the estrogenic
effects of the metabolites. Recently, the wisdom of the recom-
mendation to increase isoflavones for their HRT effect has been
challenged due to the potential increased risk of breast cancer in
those using HRT, with some in vivo and vitro work suggesting
genistein and daidzein may stimulate estrogen-dependent human
breast tumor growth (43–45). The isoflavones display both estrogen
agonist and antagonist activity (46). Again, the evidence here is
confounding, with conflicting results in the literature, but the recent
study by Wood et al. (46) suggests that, in part, this may be due
to differences in endogenous estrogen levels in the reported studies.
The authors found no estrogenic effect for isoflavones at low levels
of estrogen, as would be the case in menopausal women, a different
situation to that of the various rat models where there is no basal
level of estrogen. Studies also show that the isoflavones bind
preferentially to the � form of the estrogen receptor (ER�) rather
than ERR (47). It is generally thought that the estrogen-associated
risk of breast cancer is modulated through the ERR isoform. The
ERR isoform promotes epithelial proliferation in the breast, while
ER� does not (48). Although genistein and daidzein have received
the most attention in this area, there is also evidence that the
glyceollins act through the ER pathways (49, 50).

Interestingly, there is also some evidence that the degree of
processing may have an impact on the ability to stimulate
tumorogenisis, with highly processed products more likely to
be problematic (45, 51, 52). This conclusion would seem to
correlate with the epidemiological evidence of a reduced risk
of breast cancer in Asian populations, where the soy products
are minimally processed. It has also been suggested that early
and prolonged exposure to isoflavones, through a high-legume
diet, is more beneficial than a later, higher consumption of
isoflavone supplements (45).

Mechanistic studies suggest that the isoflavones may promote
cancer cell death not only through ER� but also more directly
through the down-regulation of cell survival enzymes such as

NF-kappaB (53–56), the activation of apoptosis via ER stress
pathways(m-calpain,GADD153,GRP78,andcaspase-12)(57,58),
and mitochondrial apoptotic pathways (Mcl-1 down-regulation
and Bad cleavage) (57). These observations suggest that the
isoflavones have the potential to prevent other cancers as well,
and there have been studies around prostate cancer (53, 59–67),
colorectal cancer (68, 69), and head and neck cancer (54). The
research includes in vitro, in vivo, and clinical studies, and as
with breast cancer, the results of these studies are mixed, but
indicative of some protective effect due to isoflavones.

One of the potential confounding factors in cohort studies is
the possibility that studies of single nutrients and food may be
inconsistent because they do not account for related foods or
the potential synergistic interaction of food combinations and
other factors that may effect bioavailability (including cooking).
In an effort to address these, Velie et al. (70) undertook a large
diet-based cohort study (40 559 postmenopausal women). They
found three diet groups across the U.S.A.; the only diet with
significant negative correlation with invasive breast cancer was
the traditional southern diet, which correlated to high legume
intake, low mayonnaise intake, and potentially cabbage intake.
This “whole of diet” or “whole of food” approach may indeed
be a very important consideration since, as discussed later, the
legumes that contain these isoflavones also contain other
metabolites (in particular, saponins and sugar derivatives) which
also possess anticancer activity.

Pharmacokinetic studies indicate that the plasma levels of
the isoflavones can reach biologically significant levels (low
micromolar) (46, 71). The glycosides are hydrolyzed to produce
the aglycones, which have a half-life in the plasma of 4–8 h
(71). Interestingly, equol (11) a human metabolite of daidzein,
which is also highly bioactive, is not found ubiquitously. In a
recent study, this metabolite was found in only 30% of women
studied. Equol is likely to be a product of action by intestinal
microflora, and it has been suggested that it may be more
bioactive than the parental isoflavone (36). This observation
introduces yet another potential source of variability in clinical
studies––since an individual’s microflora may be highly specific,
the products of gut bacteria will vary between subjects in a
study, and this may have large contributing effects on the
intersubject variability.

There is growing evidence that the isoflavones may have a
role to play in the treatment of metabolic disorders. A meta-
analysis of 38 different controlled clinical trials concluded that
soy protein intake led to decreased serum concentrations of total
cholesterol, LDL cholesterol, and triglycerides (35). Studies in
rats have shown that chickpea consumption can normalize
triacylglyceride levels in hypercholesterolemic rats (72). This
area of research is in its infancy compared to the enormous focus
that isoflavones and cancer have received; however, there have
been several mechanistic studies which suggest potential ef-
ficiency. Some of this action is related to the compounds’ ability
to act in a similar way to estrogen. Genistein, daidzein, and
biochanin A have been reported as estrogen-related receptor R
(ERRR) agonists. The orphan ERRs comprising ERRR, ERR�,

Figure 6. Biosynthetic relationship between isoflavones found in soy.
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and ERRγ bind and regulate transcription via estrogen response
elements but do not bind endogenous estrogens. ERRR is
involved in energy homeostasis and so is a likely target for the
treatment of metabolic disorders (73). PPARR and PPARγ (the
peroxisome proliferator-activated receptors) active compounds
are used to correct dyslipidemia and to restore glycaemia
balance, respectively. Formononetin, biochanin A, genistein, and
daidzein act as PPARR and PPARγ activators. Biochanin A
and formononetin, in particular, are of interest in that they are
active at low doses (1–4 µmol/L) (74). These compounds are
both present in greater amounts in chickpeas compared to soy
beans, and for conditions such as type II diabetes, the intake of
pulses such as chickpeas may be of greater benefit.

Even less well-studied is the potential protective effect of
isoflavones against neurodegenerative diseases. Although much
more experimental evidence is required to investigate this
hypothesis, the initial reports are intriguing. Interest in this area
again arose from epidemiological studies that suggested post-
menopausal women using estrogen replacement therapy had a
decreased risk of developing dementia (75, 76). Genistein,
daidzein, and glycitein (12) were examined in a transgenic
nematode model for their ability to alleviate � amyloid
expression-induced paralysis. Only glycitein demonstrated
significant activity, and this at a relatively high concentration
(100 µg/mL) (77). However, the ability of this isoflavone to
reduce the formation of the � amyloid is nonetheless fascinating
and surely warrants further investigation. More recently, an
investigation of biochanin A suggested it may be protective
against Parkinson’s disease through its ability to protect
dopaminergic neurons (78). These intriguing results suggest that
pulses may have a role to play in healthy aging strategies, though
clearly much additional research is required.

Cooking/Processing Effects. Although there have been
several studies on pulses investigating the effect of cooking
techniques on the removal of compounds such as phytate,
oligosaccharides, and saponins (as discussed later), these studies
have not, in general, addressed the stability of the isoflavones.
There have been several studies on the isoflavone content of
foods (26, 79–83) but few tracing their stability from the legume
to the processed product. One of the more detailed reports in
this area demonstrated that processing does have a significant
effect on isoflavone content and indeed causes chemical
modification of the isoflavones. The most common observation
was the loss of the esterified malonate to form the glycoside of
the isoflavones under any heat conditions (including baking and
frying) (84). These authors also noted the almost complete
absence of any isoflavones in the “low-fat” soy products. On
the basis of the published literature, it seems the greater the
degree of processing, the lower the amounts of isoflavones in
the resulting product, but it remains unclear actually how much
of the bioactives are lost during different processing
methods.

Agricultural Studies. There is good evidence that farming
practice can directly influence the levels of isoflavones in crops.
The majority of this work has focused on soy, and it is likely that
the results would transfer to pulses, though this hypothesis requires
testing. One field study on soy beans demonstrated that irrigation
enhances isoflavone content by as much as 2.5 fold (85). The
application of potassium-rich fertilizer also results in an increase
in the desirable bioactives (86). A 3-year breeding study demon-
strated that levels of isoflavones are related to both environmental
and genetic elements that would be susceptible to selection (83),
and these genomic regions have been identified (87). This is an
active area of research; for example, the U.S. Agricultural Research

Service has initiated research projects working to understand the
elicitation mechanism of flavones to enhance content in plants (88).

The isoflavones of edible legumes are not well-characterized
for their natural role in plants, but there is evidence that many are
antimicrobial and may have a role in plant protection. For example,
the antifungal activity of lupin isoflavones has been demonstrated
(89). In a study on the soybean cultivar response to fungal attack,
it was noted that of two saprophytic fungi (Mucor ramosissimus
and Rhizopus sp.) only M. ramosissimus induced an accumulation
of metabolites including isoflavones. In the strains resistant to the
fungus, a greater number of isoflavones (including glyceollins I,
II, and III; glycinol; glyceocarpin; genistein; isoformononetin; and
N-acetyltyramine) were induced, and with the exception of
genistein, the compounds were demonstrated to possess antifungal
activity (90). The cell-wall glucan from another fungus (Phytoph-
thora megasperma Drechs. f. sp. glycinea, Kuan and Erwin) is
also an elicitor of protective isoflavones (including the glycoside
conjugates) in the soybean (91). An investigation of the fungal
elicititor from Diaporthe phaseolorum f. sp. Meridionalis, the causal
agent of stem canker, suggested that the elicitation of isoflavones
may be mediated by the nitric oxide synthase pathway (92).

Interestingly, there is some evidence that specific symbiotic
interactions have evolved to take advantage of the isoflavones’
chemistry. It has been demonstrated that the symbiotic relation-
ship between the fungus Rhizobium lupini and Lupinus albus
stimulates an increase in production of prenylated isoflavones
in the root nodules (93). Theses prenylated isoflavones possess
in vitro activity against a number of other Rhizobium species.
Tahara et al. (94) have described the isolation and testing of
several flavones, isoflavones (including the novel compound
isolupalbigenin, 13), and chalcone metabolites from the yellow
lupin and demonstrated that many of them possess antifungal
activity against Cladosporium herbarum. Indeed, many novel
isoflavones were described for the first time from lupins and
reportedly possess antifungal activity (89, 95–103).

These studies suggest not only that isoflavones have potential
benefits for both human and plant health but also that these
traits are subject to manipulation through both farm management
and breeding strategies.

SAPONINS

Saponins are secondary metabolites of mixed biosynthesis.
They consist of a triterpene or steroid nucleus (the aglycone)
with mono- or oligosaccharides attached to this core. Saponins
have long been considered undesirable due to toxicity and their
haemolytic activity. However, there is enormous structural
diversity within this chemical class, and only a few are toxic
(104). The most common saponins in legumes include the
soyasaponins, which are classified into group A, B, and E
saponins on the basis of the chemical structure of the aglycone.
These have the general structure shown in Figure 7.

Soyasaponins do not have reported toxicity in monkeys,
humans, rats, or chicks, although high levels do impart a bitter
taste (104). This is not a universal trait of the structure class,
and the potential for the use of sweet saponins has been the
subject of recent literature (105, 106).

Saponins have been reported in many edible legumes,
although the detailed structures were not always established.
They have been found in lupins (107, 108), lentils (109, 110),
and chickpeas (104, 110–113), as well as soy, various beans,
and peas (104).

Activities and Bioavailability. The spectrum of biological
activity of saponins is as broad as the structure class. The
literature suggests that legumous saponins may possess anti-
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cancer activity (104, 114–119) and be beneficial for hyper-
lipidemia (72, 104, 113). The adjuvant properties of certain
saponins has also been utilized in vaccines for many years (120).
The best studied are the soyasaponins both in terms of
epidemiology and in vitro and in vivo systems.

Epidemiologic studies suggest that saponins may play a role
in protection from cancer (104), and there are a number of
hypothesized modes of action. Mechanistic experiments that give
some insight into the potential mode of action of saponins have
attracted recent research attention. Metastatic events are critical
in cancer proliferation, and there is evidence that glycosylation
is an important event in this process (121–126). Chang et al.
(115) have recently demonstrated that soyasaponin I decreases
the expression of R-2,3-linked sialic acid on the cell surface,
which in turn suppresses the metastatic potential of melanoma
cells. The observed anticancer activity may therefore in part be
due to this observed sialyltransferase inhibition activity.

Additional mechanistic studies indicate that there is evidence
for saponin regulation of the apoptosis pathway enzymes (AKT,
Bcl, and ERK1/2), leading to programmed cell death of cancer
cells (116, 127–129). Research on colon cancer cells suggests
that it is the lipophilic saponin cores that may be responsible
for the biological activity. The in vitro fermentations carried
out by these authors also suggest that colonic microflora
hydrolyze soyasaponins to the aglycones, potentially enhancing
the activity of the soyasaponins (119). This proposed hydro-
lyzation process is supported by later in vivo and in vitro
research that demonstrated that group B soyasaponins were not
detected from urine or fecal samples but that the metabolite,
soyasapogenol B, was detected in fecal samples. Hu et al. (118)
showed that uptake by Caco-2 cells was limited, indicating poor
intestinal absorption. Studies on saponins from other sources
suggest that intestinal uptake is largely by diffusion mechan-

isms (130–132). There is some suggestion that microbial and
hepatic modification (esterification with fatty acids) may enhance
bioavailability (133), but saponins are generally thought to have
low bioavailability. There is some evidence that certain materials
enhance the absorption of saponins, for example, chitosan and
sodium deoxycholate (131), and so further research could
increase the understanding of additional dietary factors (within
or external to the legume) that may enhance uptake. Bioavail-
ability is also influenced by individual metabolism, food
processing methods, and interaction with bile acids (104), further
complicating research in this area.

The hyperlipidemic action of saponins has not been well-
studied, and the results can be conflicting (134), but some studies
suggest that saponins may reduce cholesterol through the
formation of an insoluble complex with cholesterol, thus
preventing absorption in the intestine. Additionally, some
saponins increase the excretion of bile acids––an indirect method
of decreasing cholesterol (135).

Cooking/Processing Effects. Cooking and processing can
have a significant effect on the levels of available saponins in
legumes. Interestingly, the results are not necessarily the same
for all legumes. Soaking and cooking studies on chickpeas and
lentils suggest that 2–5% of saponin content can be lost from
chickpeas during cooking, but a much larger 6–14% can be lost
from lentils (110). The method of cooking has a significant effect
on saponin loss, with autoclaving having a large effect (136).
Some saponins are thermolabile and may interconvert or degrade
(e.g., soyasaponin VI forms soyasaponin I with increased
cooking times) (104, 137). In terms of human health, it is unclear
what the biological significance of such interconversions may
be.

Agricultural Studies. The role of saponins in the plant is
not clear. It is suggested that they play a role in chemical
defense. Studies of some lupin saponins show that they possess
moderate antifungal activity (108), and it is possible that the
bitter taste of some saponins, particularly the acetyl derivatives,
may act as a deterrent to herbivores (104). The saponins of
edible legumes are not well-characterized for their natural role
in plants. Studies of other plant saponins suggest that many are
antimicrobial and may have a role in the protection of plants
from microbial infection, a suggestion which is supported by
the observation that saponin-deficient strains are often less
disease-resistant (138–148).

ALKALOIDS

In general, the majority of alkaloids from edible legumes have
been reported from lupins. Lupins have a relatively short history
of use as a grain crop, and it is only recently (the past 20–30
years) that cultivars have been developed with a reduced alkaloid
content (149). These cultivars are often referred to as “sweet”
lupins since the alkaloids often impart a bitter taste. This is not
to say that lupins are the only edible legumes from which
alkaloids have been reported. The alkaloid trigonelline (14) has
been reported from peas (150), and it is possible that targeted
studies of chickpeas and lentils would also reveal low levels of
alkaloids as well.

In particular, it would be interesting to examine some of the
less-cultivated landrace varieties of chickpeas and lentils to
investigate alkaloid chemistry. Over centuries of cultivated use,
alkaloids may well have been bred out of the now-accepted
varieties due to toxicity, as well as to enhance palatability.
However, such compounds may have biological activity of value
in certain circumstances. For example, although toxic to some
individuals, hydroxypyrimidine glucoside alkaloids, which are

Figure 7. Chemical structure of saponins.
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the antimalarial principals of fava beans, have beneficial
properties for human health (151). Lupins have produced a large
range of interesting alkaloid chemicals, and both edible and
related lupin species continue to be the subject of literature
reporting novel chemistry (152–158).

Activities and Bioavailability. As a broad chemical class,
alkaloids demonstrate a diversity of biological activity. One of
the most intriguing recent reports discusses the enhancement
of insulin secretion by lupin quinolizidine alkaloids (159). The
authors note that this increased secretion only occurs in the
presence of relatively high glucose levels and so may be of
relevance for managing type II diabetes.

Cooking/Processing Effects. Although there may be trace
amounts of alkaloids present in legumes cultivated for human
consumption, preparation often removes these chemicals. The
alkaloid concentration may be enhanced in the seed (158);
however, in general, soaking removes a significant proportion
of alkaloids from the lupin seed (160).

Agricultural Studies. Although the alkaloid content of the
legume seeds may be undesirable for human or animal
consumption, there is evidence that the alkaloid content is
protective for the plant. For instance, it has been noted that
“sweet” lupins are susceptible to a large number of insect
herbivores to which the wild-type plants are resistant (161).
Alkaloids are not the only bitter principals that may be
responsible for such activity. As has already been discussed,
saponins may affect both palatability and disease resistance.

BIOACTIVE CARBOHYDRATES

Activities and Bioavailability. For many years, the focus on
legume sugars and oligosaccharides has centered on the minimiza-
tion of the raffinose sugars. The link between the raffinose sugars
and flatulence has long been understood (162, 163) and can be an
important impediment to the increased consumption of legumes
(164). Flatulence and related disorders, including bloating and
diarrhea, are due to a lack of R-galactosidases in the upper gut.
The oligosaccharides then enter the lower gut where they are
metabolized by the bacteria, resulting in an accumulation of carbon
dioxide and hydrogen (165). The raffinose sugars include raffinose
(15), stachyose (16), and verbascose (17) (Figure 8). There are
appreciable levels of these oligosaccharides in chickpeas, lentils,
lupins, and field peas (1–12% of dry weight) with considerable
variation between the different pulses (166). Studies on the
quantities of these sugars in chickpeas show a distinct difference
between desi and kabuli types. On average, the desi-type chickpeas
are 16% higher in the three oligosaccharides, but with very low
levels of verbascose found in either. Interestingly, the kabuli type
also has 47% more sucrose than the desi chickpeas (165), a likely
indication that these are factors subject to breeding (since the kabuli
type has been bred for thousands of years, primarily for human
consumption).

Oligosaccharides have also been demonstrated to be of
potential value for immune health (167–170). Evidence for the
mode of action is scant, but there are tantalizing hints that such
immune modulation may occur through the enhancement of the
innate immune system (in particular, through the Tol-like
receptors) (171). Evidence for immunomodulating oligosaccha-
rides or sugar components for gut health is currently focused
more on milk sugars (172–176) than those from plants.
However, it has been noted that the oligofructose metabolites
from plants may play an important role in these functions, and
additional research in this area is warranted (177, 178).

Phytic acid, or inositol hexaphosphate, has also been identified
as an antinutritional, this compound acting through its ability

to inhibit mineral uptake. The uptake of zinc, calcium, and iron
has been studied, and though the findings are mixed, there is
evidence that zinc uptake, in particular, may be inhibited by
phytic acid (179–186).

Pulse grains are a dietary source of minerals, although their
bioavailability is considered lower because of the concentration
of phytates (187). Phytic acid (myo-inositol-(1,2,3,4,5,6) hexakis-
phosphate; IP6) is the major source of phosphorous in pulses
(188), although the concentration is less than 2%; for chickpeas,
phytic acid constituents make up 52% of the total available
phosphorous (189).

Phytic acid has the ability to chelate multivalent ions, those
of alkaline metals being soluble in water, while divalent metals
such as zinc, calcium, and iron salts are insoluble. This limits
the bioavailability of minerals (190).

During food processing and digestion, phytase dephosphor-
ylates phytic acid [IP6] to myo-inositol pentaphosphate [IP5],
myo-inositol tetraphosphate [IP4], myo-inositol triphosphate
[IP3], myo-inositol diphosphate [IP2], and myo-inositol
monophosphate [IP1]; however, only IP5 and IP6 have a
negative effect on the bioavailabity of divalent metal ions
(191).

Of the various forms of phytates, IP6 is present in the greatest
quantity and the most stable during cooking, followed by IP5,
IP4, and IP3 (Table 2).

The ability to chelate with metal ions has associated IP6 with
antinutritional properties, although the presence of IP5 and -6
in virtually all mammalian cells (192) contradicts this view
(193), and reports indicate that there may be some protective
effects such as decreasing the risk of iron-mediated colon cancer

Figure 8. Raffinose family of oligosaccharides.
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and lowering serum cholesterol and triglycerides in experimental
animals (194). Phytic acid has also been shown to have a
positive effect due to its antioxidant (195) and anticarcinogenic
effects (190, 196).

IP6 was demonstrated to be effective in controlling cancer
in experimental mammary tumours (197) and in human prostate
carcinoma cells (198). Using rats, Shamsuddin demonstrated
that IP6 is quickly absorbed through the stomach and upper
intestine and is distributed as inositol and IP1, and in in vitro
studies, IP6 is taken up by malignant cells undergoing invariable
dephosphorylation to IP1–5 and inositol (199).

Recently, focus has turned to the potentially beneficial effects
of some of these antinutritionals. Phytic acid, in particular, has
been the focus of research into its anticancer and hypocholes-
terolaemic action (135, 200–205). Phytic acid has been studied
in relation to prostate cancer (201, 206, 207), breast cancer (204),
colon cancer (208–211), and leukaemia (212–214). The mech-
anism of the anticancer activity is still not well-understood,
though cell arrest at the G1 phase is indicated, potentially acting
through the cyclin-dependent kinase pathway (206, 207). There
is also some indication that phytic acid affects the immune
response and that immunomodulating activity may be, in part,
responsible for anticancer activity through the activation of
natural killer cells (210). Regardless of the precise mode of
action, there is sufficient excitement around the anticancer
activity of phytic acid that some researchers are calling for
extensive clinical trials of the phytochemical (200, 205).

Cooking/Processing Effects. As mentioned earlier, the
removal of oligosaccharides, in particular, of the raffinose
family, and undesirable sugars such as phytic acid has been
studied for some time. Many of the undesirable oligosaccharides
canbedramatically reducedbysoakingorcooking(166,215–218).
Treatment with R-galactosidases (219), germination (220–223),
and even irradiation (224) have also been found to be effective
methods to reduce these constituents.

Agricultural Studies. The biological functions of these sugars
are not certain, but it seems likely that phytic acid acts as a
store of phosphorous within the seed (225). In addition, there
is evidence that some of the raffinose sugars are protective
against cell damage under dehydration conditions (226, 227).
Genetic studies suggest that these metabolite levels are subject
to manipulation (225, 228).

Conclusion. The overall benefits of pulses have historically
been associated with their macronutrient composition, such as
protein and starch, although there is now sufficient evidence to
suggest that non-nutritional bioactive compounds play a sig-
nificant role. Despite a large volume of literature, there is still
the need for additional work around the substantiation of the
health benefits of different pulse metabolites and the potential
synergistic effects between the different classes of bioactives.

There is good evidence that levels of these bioactives in the
plant are subject to manipulation. There appears to be significant
natural variation both between and within the different species
of pulses and the opportunity to enhance the concentrations
through plant breeding or the application of agronomic practices.
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